Zusammenfassung
Ziel: Evaluation der Variabilität des koronaren Kalzium-Scores in Abhängigkeit des Rekonstruktionszeitpunktes
mittels 64-Zeilen-CT. Material und Methoden: Bei 30 Patienten (18 männlich, 12 weiblich, mittleres Alter 57 ± 9 Jahre) mit einer
mittleren Herzrate von 66 ± 10 Schlägen/Minute wurde der koronare Kalzium-Score mittels
64-Zeilen-CT (Somatom Sensation 64, Siemens Medical Solutions, Erlangen) und eines
standardisierten Untersuchungsprotokolls bestimmt. Orale β-Blocker wurden bei 12 Patienten
mit einer Herzfrequenz > 70 Schlägen/Minute appliziert. Die Bildrekonstruktion erfolgte
in 10 %-Schritten von 10 - 100 % des RR-Intervalls im EKG. Für jede dieser Bildrekonstruktionen
berechneten zwei erfahrene, geblindete Untersucher den Agatston-Score (AS), den Kalzium-Massen-Score
(MS) und den Kalzium-Volumen-Score (VS). Die Ergebnisse wurden mit entsprechenden
Studien aus der 16-Zeilen-CT verglichen. Ergebnisse: Die Mittelwerte und mittleren Variationskoeffizienten für alle Patienten waren wie
folgt: AS, 397 ± 829, 109 % MS, 88 ± 225, 154 % VS, 335 ± 669, 100 %. Bezüglich des
Rekonstruktionsintervalls waren die mittleren Variationskoeffizienten wie folgt: 107
% (AS), 97 % (VS), 116 % (MS). Für keinen Score konnte ein spezifisches Rekonstruktionsintervall
identifiziert werden, welches eine statistisch signifikant geringere Variabilität
aufwies. Die Interobserver-Übereinstimmung war hoch (K = 0,98). 10/30 Patienten (pts)
konnten mit statistischer Signifikanz (p < 0,05) mehr als einer Risikogruppe (RG)
zugeordnet werden: 6 pts = 2 RG; 3 pts = 3 RG; 1 pts = 4 RG. Bei 5/30 Patienten wurde
ein Score von null in zumindest einem Rekonstruktionsintervall gefunden, jedoch konnte
mittels weiterer Bildrekonstruktionen Kalzium nachgewiesen werden. Die Anzahl von
Patienten, die mehreren Risikogruppen zugeordnet werden konnten, war signifikant geringer
im Vergleich zu publizierten Daten für die 16-Zeilen-CT (p < 0,05). Schlussfolgerung: Die Bestimmung der koronaren Kalzium-Scores mittels 64-Zeilen-CT weist, wie bereits
für die 16-Zeilen-CT beschrieben, eine hohe Variabilität in Abhängigkeit des Rekonstruktionszeitpunktes
auf. Unsere Ergebnisse zeigen im Vergleich zu früheren Studien, dass mit CT-Geräten
dieser Herstellergeneration der Einfluss der Score-Schwankungen auf die Risikostratifizierung
reduziert werden kann.
Abstract
Purpose: To evaluate the variability of coronary calcium scores depending on the image reconstruction
interval using a 64-slice CT scanner. Materials and Methods: 30 patients (18 male, 12 female; mean age 57 ± 9 yrs; mean heart rate 66 ± 10 bpm)
underwent coronary calcium scoring using a 64-slice CT scanner (Somatom Sensation
64, Siemens Medical Solutions, Erlangen) and a standardized scanning protocol. Oral
β-blockers were administered to 12 patients with a baseline heart rate > 70 bpm. Images
were reconstructed in 10 % increments from 10 - 100 % of the RR interval. Two blinded
experienced observers independently calculated Agatston (AS), calcium mass (MS) and
volume scores (VS) for every reconstructed image series. The results were compared
to similar studies for 16-slice CT scanners. Results: The mean values and mean coefficients of variation among all patients were as follows:
AS, 397 ± 829, 109 % MS, 88 ± 225, 154 % VS, 335 ± 669, 100 %. Regarding the reconstruction
intervals, the mean coefficients of variation were as follows: 107 % (AS), 97 % (VS),
116 % (MS). No specific image reconstruction interval with statistically significant
lower variability for each score could be identified. High inter-observer agreement
was achieved (K = 0.98). With statistical significance (p < 0.05) 10/30 patients (pts)
were able to be allocated to more than one risk group (RG): 6 pts = 2 RG; 3 pts =
3 RG; 1 pts = 4 RG. The scores for 5/30 patients were zero for at least one reconstruction
interval, but further reconstructions revealed calcifications. The number of patients
assignable to different risk groups was significantly lower compared to published
data using a 16-slice scanner (p < 0.05). Conclusion: Coronary calcium scores determined using a 64-slice scanner display a wide range
of variability depending on the image reconstruction interval as already described
for 16-slice CT scanners. However, compared to previous studies, our data indicate
that this vendor’s generation of scanners reduces the influence of score variations
on the risk stratification.
Key words
cardiac imaging - computed tomography - coronary calcium - calcium scoring
Literatur
1 WHO Statistical Information System .Mortality. WHO 2006 www.who.int/whosis
2
Agatston A S, Janowitz W R, Hildner F J. et al .
Quantification of coronary artery calcium using ultrafast computed tomography.
J Am Coll Cardiol.
1990;
15
827-832
3
Rumberger J A, Simons D B, Fitzpatrick L A. et al .
Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic
plaque area: a histopathologic correlation study.
Circulation.
1995;
92
2157-2162
4
Detrano R C, Wong N D, Doherty T M. et al .
Coronary calcium does not accurately predict near-term future coronary events in high-risk
adults.
Circulation.
1999;
99
2633-2638
5
Raggi P, Callister T Q, Cooil B. et al .
Identification of patients at increased risk of first unheralded acute myocardial
infarction by electron-beam computed tomography.
Circulation.
2000;
101
850-855
6
Arad Y, Spadaro L A, Goodman K. et al .
Prediction of coronary events with electron beam computed tomography.
J Am Coll Cardiol.
2000;
36
1253-1260
7
Wong N D, Hsu J C, Detrano R C. et al .
Coronary artery calcium evaluation by electron beam computed tomography and its relation
to new cardiovascular events.
Am J Cardiol.
2000;
86
495-498
8
Park R, Detrano R, Xiang M. et al .
Combined use of computed tomography coronary calcium scores and C-reactive protein
levels in predicting cardiovascular events in nondiabetic individuals.
Circulation.
2002;
106
2073-2077
9
Kondos G T, Hoff J A, Sevrukov A. et al .
Electron-beam tomography coronary artery calcium and cardiac events. A 37-month follow-up
of 5,635 initially asymptomatic low- to intermediate-risk adults.
Circulation.
2003;
107
2571-2576
10
Breen J F, Sheedy II P F, Schwartz R S. et al .
Coronary artery calcification detected with ultrafast CT as an indication of coronary
artery disease.
Radiology.
1992;
185
435-439
11
Laudon D A, Vukov L F, Breen J F. et al .
Use of electron-beam computed tomography in the evaluation of chest pain patients
in the emergency department.
Ann Emerg Med.
1999;
33
15-21
12
Mautner G C, Mautner S L, Froehlich J. et al .
Coronary artery calcification: assessment with electron beam CT and histomorphometric
correlation.
Radiology.
1994;
192
619-623
13
Sangiorgi G, Rumberger J A, Severson A. et al .
Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic
plaque burden in humans: a histologic study of 723 coronary artery segments using
nondecalcifying methodology.
J Am Coll Cardiol.
1998;
31
126-133
14
Rumberger J A, Sheedy P F, Breen J F. et al .
Electron beam computed tomographic coronary calcium score cutpoints and severity of
associated angiographic lumen stenosis.
J Am Coll Cardiol.
1997;
29
1542-1548
15
Greenland P, LaBree L, Azen S P. et al .
Coronary artery calcium score combined with Framingham score for risk prediction in
asymptomatic individuals.
J Am Med Assoc.
2004;
291
210-215
16
Callister T Q, Raggi P, Cooil B. et al .
Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam
computed tomography.
N Engl J Med.
1998;
339
1972-1978
17
Maher J E, Bielak L F, Raz J A. et al .
Progression of coronary artery calcification: a pilot study.
Mayo Clin Proc.
1999;
74
347-355
18
Horiguchi J, Yamamoto H, Akiyama Y. et al .
Variability of repeated coronary artery calcium measurements by 16-MDCT with retrospective
reconstruction.
AJR Am J Roentgenol.
2005;
184
1917-1923
19
Ooijen P M van, Vliegenthart R, Witteman J C. et al .
Influence of scoring parameter settings on Agatston and volume scores for coronary
calcification.
Eur Radiol.
2005;
15
102-110
20
Rumberger J A, Brundage B H, Radar D J.
Electron beam computed tomographic coronary calcium scanning: a review and guidelines
for use in asymptomatic persons.
Mayo Clin Proc.
1999;
74
243-252
21
Devries S, Wolfkiel C, Shah V. et al .
Reproducibility of the measurement of coronary calcium with ultrafast computed tomography.
Am J Cardiol.
1995;
75
973-975
22
Wang S, Detrano R C, Secci A. et al .
Detection of coronary calcification with electron-beam CT-beam computed tomography:
evaluation of interexamination reproducibility and comparison of three image-acquisition
protocols.
Am Heart J.
1996;
132
550-558
23
Ulzheimer S, Kalender W A.
Assessment of calcium scoring performance in cardiac computed tomography.
Eur Radiol.
2003;
13
484-497
24
Hong C, Becker C R, Schoepf U J. et al .
Coronary artery calcium: absolute quantification in nonenhanced and contrast-enhanced
multi-detector row CT studies.
Radiology.
2002;
223
474-480
25
Shemesh J, Tenenbaum A, Kopecky K K. et al .
Coronary calcium measurements by double helical computed tomography. Using the average
instead of peak density algorithm improves reproducibility.
Invest Radiol.
1997;
32
503-506
26
Becker C R, Knez A, Ohnesorge B. et al .
Visualization and quantification of coronary calcifications with electron beam and
spiral computed tomography.
Eur Radiol.
2000;
10
629-635
27
Budoff M J, Mao S, Zalace C P. et al .
Comparison of spiral and electron beam tomography in the evaluation of coronary calcification
in asymptomatic persons.
Int J Cardiol.
2001;
77
181-188
28
Hong C, Bae K T, Pilgram T K.
Coronary artery calcium: accuracy and reproducibility of measurements with multi-detector
row CT-assessment of effects of different thresholds and quantification methods.
Radiology.
2003;
227
795-801
29
Ohnesorge B, Flohr T, Fischbach R. et al .
Reproducibility of coronary calcium quantification in repeat examinations with retrospectively
ECG-gated multisection spiral CT.
Eur Radiol.
2002;
12
1532-1540
30
Mahnken A H, Wildberger J E, Sinha A M. et al .
Variation of the coronary calcium score depending on image reconstruction interval
and scoring algorithm.
Invest Radiol.
2002;
37
496-502
31
Schlosser T, Hunold P, Schmermund A. et al .
Coronary artery calcium score: influence of reconstruction interval at 16-detector
row CT with retrospective electrocardiographic gating.
Radiology.
2004;
233
586-589
32
Sandstede J J, Stoffels J, Wendel F. et al .
Different reconstruction intervals for exclusion of coronary artery calcifications
by retrospectively gated MDCT.
AJR Am J Roentgenol.
2006;
186
193-197
33
Hoff J A, Chomka E V, Krainik A J. et al .
Age and gender distributions of coronary artery calcium detected by electron beam
tomography in 35,246 adults.
Am J Cardiol.
2001;
87
1335-1339
34
Cohen J.
A coefficient of agreement for nominal scales.
Educational and Psychological Measurement.
1960;
20
37-46
35
Flohr T, Stierstorfer K, Raupach R. et al .
Performance Evaluation of a 64-Slice CT System with z-Flying Focal Spot.
Fortschr Röntgenstr.
2004;
176
1803-1810
36
Flohr T, Bruder H, Stierstorfer K. et al .
New Technical Developments in Multislice CT, Part 2: Sub-Millimeter 16-Slice Scanning
and Increased Gantry Rotation Speed for Cardiac Imaging.
Fortschr Röntgenstr.
2002;
174
1022-1027
37
Yamamura J, Stevendaal U van, Köster R. et al .
Experimental 16-Row CT Evaluation of In-Stent Restenosis using New Stationary and
Moving Cardiac Stent Phantoms: Experimental Examination.
Fortschr Röntgenstr.
2006;
178
1079-1085
38
Kovacs A, Probst C, Sommer T. et al .
CT-Koronarangiographie bei Patienten mit Vorhofflimmern.
Fortschr Röntgenstr.
2005;
177
1655-1662
39
Dewey M, Hoffmann H, Hamm B.
Multislice CT Coronary Angiography: Effect of Sublingual Nitroglycerine on the Diameter
of Coronary Arteries.
Fortschr Röntgenstr.
2006;
178
600-604
40
Husmann L, Leschka S. et al .
Einfluss des Bodymass-Index auf den Kontrast in den Koronararterien mit der 64-Schicht-CT.
Fortschr Röntgenstr.
2006;
178
1007-1013
41
Schlosser T, Hunold P, Voigtlander T. et al .
Coronary artery calcium scoring: influence of reconstruction interval and reconstruction
increment using 64-MDCT.
AJR Am J Roentgenol.
2007;
188
1063-1068
42
Muhlenbruch G, Klotz E, Wildberger J E. et al .
The accuracy of 1- and 3-mm slices in coronary calcium scoring using multi-slice CT
in vitro and in vivo.
Eur Radiol.
2007;
17
321-329
43
Muhlenbruch G, Thomas C, Wildberger J E. et al .
Effect of varying slice thickness on coronary calcium scoring with multislice computed
tomography in vitro and in vivo.
Invest Radiol.
2005;
40
695-699
44
Horiguchi J, Yamamoto H, Hirai N. et al .
Variability of repeated coronary artery calcium measurements on low-dose ECG-gated
16-MDCT.
AJR Am J Roentgenol.
2006;
187
W1-6
45
Lawler L P, Horton K M, Scatarige J C. et al .
Coronary artery calcification scoring by prospectively triggered multidetector-row
computed tomography: is it reproducible?.
J Comput Assist Tomogr.
2004;
28
40-45
46
Thomas C K, Muhlenbruch G, Wildberger J E. et al .
Coronary artery calcium scoring with multislice computed tomography: in vitro assessment
of a low tube voltage protocol.
Invest Radiol.
2006;
41
668-673
47
Muhlenbruch G, Hohl C, Das M. et al .
Evaluation of automated attenuation-based tube current adaptation for coronary calcium
scoring in MDCT in a cohort of 262 patients.
Eur Radiol.
DOI: 10.1007/s00330 -006-0543-4
48
Jakobs T F, Wintersperger B J, Herzog P. et al .
Ultra-low-dose coronary artery calcium screening using multislice CT with retrospective
ECG gating.
Eur Radiol.
2003;
13
1923-1930
Dr. Markus Weininger
Institut für Röntgendiagnostik, Universitätsklinikum Würzburg
Josef-Schneider-Str. 2
97080 Würzburg
Phone: ++49/9 31/3 42 01
Fax: ++49/9 31/3 42 09
Email: weininger@roentgen.uni-wuerzburg.de